

Institute of Energy and Mechanical Engineering named after A. Burkitbayev Department of "Technological machines and equipment"

EDUCATIONAL PROGRAM 6B07132 «Predictive technologies and machine diagnostics»

Code and classification of the	6B07 «Engineering, manufacturing and civil
field of education	engineering»
Code and classification of	6B071 «Engineering and engineering trades»
training directions	
Group of educational programs	B064 «Mechanics and metal working»
Level based on NQF	6
Level based on IQF	6
Study period	4 years
Amount of credits	240

Almaty 2025

Educational program 6B07132 «Predictive technologies and machine diagnostics" was approved at the meeting of K.I. Satbayev KazNRTU Academic Council Minutes # 12 dated «22» April 2024

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council Minutes # 6 dated «19» April 2024

Educational program 6B07132 «Predictive technologies and diagnostics of machines» was developed by Academic committee based on direction 6B071 «Engineering and engineering trades»

Full name	Academic degree / academic title	Position	Place of work	Signature
Chairperson of A	cademic Committee:			
Yelemessov Kassym	Candidate of Technical Sciences, Professor	Director of the Institute of Energy and Mechanical Engineering	KazNRTU named after K.I. Satbayev	64
Teaching staff:				
Kaliev Bakytzhan	Candidate of Technical Sciences, Associate Professor	Head of the department "Technological machines and equipment"	KazNRTU named after K.I. Satbayev	Hom -
Bortebayev Saiyn	Candidate of Technical Sciences,	Associate Professor	KazNRTU named after K.I. Satbayev	al
Employers:				
Shakenov Aman	PhD	Chief Executive Officer	Borusan Cat Kazakhstan LLP	A/Ney
Students				
Tynyshtyk Erasyl		4th year student	KazNRTU named after K.I. Satbayev	Epaf

Table of contents

	List of abbreviations and symbols	4
1.	Description of the educational program	5
2.	Goals and objectives of the educational program	6
3.	Requirements for evaluating the learning outcomes of the	6
	educational program	
4.	Passport of the educational program	9
4.1.	General information	9
4.2.	The relationship between the achievability of the generated learning	12
	outcomes in the educational program and academic disciplines	
5.	Curriculum of the educational program	46

List of abbreviations and designations

NCJS KazNRTU named after K. I. Satbayev – NCJS «KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I. SATBAYEV»;

SOSE – State obligatory standard of education of the Republic of Kazakhstan;

EP – educational program;

IWS – independent work of a student (student, undergraduate, doctoral student);

IWST – independent work of a student with a teacher (independent work of a student (undergraduate, doctoral student) with a teacher);

WC – working curriculum;

UC – university component;

CC – component of choice;

NQF – National Qualifications Framework; S

QF – Sectoral Qualifications Framework;

LO – learning outcomes;

KC – key competencies;

SDGs – Sustainable Development Goals.

1. Description of the educational program

The field of professional activity of the bachelor of the educational program «Predictive technologies and machine diagnostics» includes:

- sections of science and technology that contain a set of tools, techniques, methods and methods of human activity aimed at creating competitive mechanical engineering products and based on the use of modern methods and tools for design, calculation, mathematical, physical and computer modeling;
- organization and execution of works on creation, installation, commissioning, maintenance, operation, diagnostics and repair of technological machines and equipment, development of technological processes for the production of parts and assemblies.

The objects of professional activity of the bachelor are:

- technological machines and equipment of various complexes;
- technological equipment and means of mechanization and automation of technological processes;
- production technological processes, their development and development of new technologies;
 - installation and repair of technological machines and equipment;
- means of information, metrological, diagnostic and management support of technological systems to achieve the quality of manufactured products;
 - means of testing and quality control of technological machines and equipment;
 - technological processes of assembling metal structures;
 - welding equipment and power supplies, assembly and welding devices;
- normative and technical documentation, systems of standardization and certification, methods and means of testing and quality control of products.

Types of professional activity are:

- experimental and research activities;
- calculation and design and analytical work;
- production and technological infrastructure;
- service and maintenance;
- installation and adjustment;
- organizational and managerial information.

The bachelor's professional activity subjects are:

- technological machines and equipment; power equipment;
- machine drive systems;
- traffic management systems;
- operator's life support systems;
- structural and operational materials;
- equipment for manufacturing, testing and recycling of technological machines;
- equipment for maintenance and repair of technological machines;
- control and measuring devices for the manufacture and operation of machines;
- equipment for automating machine work processes;
- machine design equipment

2. Goals and objectives of the educational program

The purpose of the OP: The aim of the educational program is to train highly qualified and competitive specialists with competencies in the field of predictive technologies and machine diagnostics. The program is aimed at developing digital technologies for monitoring and maintenance of equipment, implementing solutions to improve the efficiency of industrial systems (SDG 9), ensuring energy efficiency and resource conservation in production processes (SDG 7, 12) and reducing the carbon footprint through the use of innovative diagnostic methods (SDG 13).

OP tasks:

- studying the cycle of general education disciplines to ensure social and humanitarian education based on the laws of socio-economic development of society, history, modern information technologies, the state language, foreign and Russian languages;
- study of the cycle of basic disciplines that provide knowledge of natural, general technical and economic disciplines as the basis of professional education;
- the cycle of basic disciplines is aimed at studying the main theoretical aspects of the reliability of technological machines, theoretical and practical methods, areas of human activity based on the creation of competitive technological machines and modern digital design methods and tools, predictive maintenance systems, mathematical, physical and computer modeling of technological processes;
- study of disciplines that form the skills of planning and organizing research work, designing reliable technologies and devices;
- familiarization with technologies and equipment of enterprises at different stages of practical training;
- mastering the skills and abilities of laboratory research, technological calculations, selection and design of equipment using modern computer technologies and programs

3. Requirements for evaluating the learning outcomes of an educational program

The scope of the bachelor's degree program is 240 credits, regardless of the form of study, the educational technologies used, the implementation of the bachelor's degree program using a network form, the implementation of the bachelor's degree program according to an individual curriculum, including accelerated learning.

Descriptors of the level and scope of knowledge, skills, and competencies

A – knowledge and understanding:

A1 - Ability to logically represent the acquired knowledge and understanding of systemic relationships within disciplines, as well as interdisciplinary relationships in modern science.

- A2-Knowledge of approaches and methods of critical analysis, the ability to use them practically in relation to various forms and processes of production.
- A3-perform basic calculations of the main parameters of technological machines, justify their choice depending on the production levels.
 - B-Applying knowledge and understanding
- B1-Independent development and promotion of various options for solving professional problems using theoretical and practical knowledge
- B2-put forward hypotheses for acquiring new knowledge necessary for daily professional activities and continuing education
- B3 on the basis of basic knowledge, be able to navigate adequately in various situations
 - C forming judgments
- C1 on the basis of knowledge about economic patterns formation of hypotheses, forecasting and planning of economic activity of the enterprise.
- C2 be able to work in a team, correctly defend your point of view, and offer new solutions.
- CC3 skills of daily acquisition of new knowledge necessary for professional activity.
 - D personal abilities
- D1 compliance with the standard of business ethics, possession of ethical and moral standards of behavior.
- D2-ability to find a compromise, correlate your opinion with the opinion of the team D3-know social and ethical values based on public opinion, traditions, customs, and social norms and be able to navigate them in their professional activities.

Completion competencies

	General Cultural competencies (CA)
OK 1	Ability to communicate in oral and written forms in the state, Russian and foreign languages to solve problems of interpersonal and intercultural interaction
OK 2	Understanding and practical use of healthy lifestyle standards, including prevention issues, the ability to use physical culture to optimize performance
OK 3	Ability to analyze the main stages and patterns of historical development of society for the formation of civil
OK 4	Ability to use the basics of philosophical knowledge to form a worldview position
OK 5	Ability to critically use the methods of modern science in practical activities
OK 6	Awareness of the need and acquisition of the ability to independently learn and improve their skills throughout their working life
OK 7	Knowledge and understanding of professional ethical standards, proficiency in professional communication techniques
OK 8	Ability to work in a team tolerant perception of social, ethnic, confessional and cultural differences
OK 9	Ability to use the basics of economic knowledge in various fields of activity
	General Professional competencies (GIC)
OPK- 1	Ability to acquire new knowledge with a high degree of independence using modern educational and information technologies

OPK-	Possession of computer skills sufficient for professional activity with basic programming
OPK-	Knowledge of the main methods, methods and means of obtaining, storing, processing information, the ability to use modern technical means and methods for solving communication problems. information technologies using traditional information carriers,
	distributed knowledge bases, as well as information in global computer networks
OPK- 4	Understanding of the essence and significance of information in the development of modern society, the ability to receive and process information from various sources, the willingness to interpret, structure and formalize information in a form accessible to others
OPK-	
5	Ability to solve standard problems professional activity based on information and bibliographic culture with the use of information and communication technologies and taking into account the basic requirements of information security
	Professional competencies (PC)
PC 1	Ability to systematically study scientific and technical information, domestic and foreign experience in the relevant training profile
PC 2	Ability to take part in the preparation of scientific reports on the completed task and implement the results of research and development in the field of technological machines and equipment
PC 3	Ability to participate in work on innovative projects using basic research methods
PC 4	Ability to model technical objects and technological processes using standard packages and computer-aided design tools, willingness to conduct experiments using specified methods with processing and analysis
of PC	Possession of approaches and methods of critical analysis, the ability to use in practice with
5 results	regard to various forms and processes of technological processes of
SC 6	the Ability to learn a new technique, technological and technical documentation make
	adjustments with respect to operating conditions
7 PC	the Ability to participate in work on the calculation and design of details and units of technological machines in accordance with the technical tasks and use the standard tools of design automation
PC 8	Ability to conduct patent research to ensure the novelty of the new design solutions and their patentability and the identification of indicators of technical level of engineered products
PC 9	Ability to explore and optimize the modes of operation of technological machines during their operation
PC 10	the Ability to pre-technical-economic justification of design solutions
PC 11	the Ability to design technical equipment jobs with accommodation of technological equipment, the ability to learn the input equipment
PC 12	the Ability to participate in work on fine-tuning and development of technological processes during the preparation of the production of a new product, to check the quality of the installation and commissioning testing and commissioning of new types of products, components and parts manufactured products
PC 13	the Ability to check the technical condition and residual life of process equipment, arrange a routine inspection and maintenance of technological machines and equipment
PC 14	the Ability to carry out activities for the prevention of occupational accidents and occupational diseases, to monitor compliance with environmental safety of the operations
PC 15	the Ability to choose the main and auxiliary materials, methods of implementation of technological processes, to apply advanced methods of operation of technological equipment
PC 16	to Wield the main methods of calculation of parameters of technological equipment, the method of their selection on the directories and catalogs.

4. Passport of the educational program

4.1. General information

No	Field name	Note
1	Code and classification of the field of	6B07 «Engineering, manufacturing and civil
	education	engineering»
2	Code and classification of training	6B071 «Engineering and engineering trades»
	directions	
3	Educational program group	B064 «Mechanics and metal working»
4	Educational program name	"Predictive technologies and machine diagnostics"
5	Short description of educational	Educational program "Reliability and predictive
	program	maintenance of technological machines and equipment" in
		the following industries:
		- metallurgical machinery and equipment;
		- mining machinery and equipment;
		- machinery and equipment of the oil and gas industry;
6	Purpose of EP	The purpose of the educational program is to provide
		comprehensive and high-quality training of competitive,
		highly qualified specialists who are ready to solve
		practical and theoretical problems in predictive
		diagnostics in professional activities in modern conditions
	0.77	based on digital maintenance systems.
	Type of EP	Innovative EP
8	The level based on NQF	6
9	The level based on IQF	6
		no
11	List of competencies of educational	
	program	QC 2. Basic literacy in the natural sciences
		QC 3. General engineering competencies
		QC 4. Professional competencies
		QC 5. Engineering and computer competencies QC 6. Engineering and working competencies
		QC 7. Socio-economic competencies
		QC 8. Special professional competencies
12	Learning outcomes of educational	LO1: Apply the basic patterns and forms of regulation of
12	program	social behavior, the rights and freedoms of man and
	Program	citizen, demonstrating respect for people, tolerance for
		another culture, readiness to maintain partnerships
		LO2 : Demonstrate knowledge and skills of sections of
		natural disciplines: higher mathematics, physics and
		related disciplines and apply them to solve engineering
		problems in the field of predictive technologies and
		machine diagnostics
		LO3: Assign materials and design a technological process
		and methods for manufacturing basic technological parts,
		elements and assemblies using advanced methods for
		obtaining machine parts
		LO4: Analyze and choose the main methods, methods
		and means of obtaining, storing, processing special

	information, know the basics of programming for
	database management, be able to use digital data to solve
	communication problems for modern technical systems
	and the use of information technologies for the use of
	global information networks
	LO5: Regulate the procedure and procedure for
	installation and commissioning during testing and
	operation of the diagnosed equipment. Assess the
	technical condition and residual life of process
	equipment, organize routine inspection and maintenance
	of equipment using diagnostic tools, process the results of
	system measurements
	LO6 : Analyze machine operational processes taking into
	account environmental safety requirements (SDGs 9, 12)
	LO7: Have tools to assess the carbon footprint of
	technological processes and develop strategies to reduce
	it (SDGs 12, 13).
	LO8: Apply standard calculation methods in the design of
	parts and assemblies of technological machines and
	welded structures. Use standard design automation tools
	in calculations
	LO9: Possess regulatory, economic and organizational
	knowledge when conducting business in the conditions of
	the Kazakh economy. Know professional ethics, ethical
	codes, generally accepted business rules. Know the
	concept, content and types of corruption
	LO10 : Use digital technologies and predictive analytics
	systems to improve equipment reliability (SDGs 9, 12)
	LO11 : Develop strategies to extend the life of equipment
	and reduce production waste (SDG 12).
	LO12: Apply knowledge in the field of operation and
	repair of machinery and equipment for the integrated
	management and monitoring of industrial production
	LO13: Formulate system knowledge for independent
	research in the field of predictive analysis of machinery
	and equipment. Analyze theoretical and experimental
	research in order to modernize or create new methods
	LO14 Apply energy-saving and resource-saving methods
12 Education from	in technical systems (SDGs 7, 12).
13 Education form	full
14 Period of training	4 years
15 Amount of credits	240 Waralih Bussian English
16 Languages of instruction	Kazakh, Russian, English
17 Academic degree awarded	Bachelor of Engineering and Technology
18 Developer(s) and authors:	Academic Affairs Committee

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

N.C.			Macapini				<u>C</u>		.4.J	laar	nir ~	01146	0.000 6.00 (-	odss)	`		
№	Name of the		Number		T 02	T 0							omes (c			T 01	T 01
	discipline	Short description of the discipline	of	LOI	LO ₂						LO8		LO10I				LOI
	1		credits	4.	1	3	4	5	6	7		9	1		2	3	4
		Cycle of ger				plin	es										
	D 1: 1 1		quired co	_	ent		1	I							1		
	English language	English is a discipline of the general	5	V													
		education cycle. After determining the															
		level (according to the results of															
		diagnostic testing or IELTS results),															
		students are divided into groups and															
1		disciplines. The name of the discipline															
		corresponds to the level of English															
		proficiency. During the transition from															
		level to level, the prerequisites and															
		post-prerequisites of the discipline are															
		observed															
	Kazakh (Russian)	The socio-political, socio-cultural	5	v													
	language	spheres of communication and															
		functional styles of the modern															
		Kazakh (Russian) language are															
		considered. The course highlights the															
		specifics of scientific style in order to															
2		develop and activate professional and															
		communicative skills and abilities of															
		students, allows students to practically															
		master the basics of scientific style															
		and develops the ability to perform															
		structural and semantic analysis of the															
		text															
	Information and	Required component. The task of	5				v										
3	communication	studying the discipline is to acquire	-														
	technologies (in	theoretical knowledge about															

	English)	information processes, about new information technologies, local and global computer networks, methods of information protection; to acquire skills in using text editors and tabular processors; to create databases and various categories of application								
	History of	programs The course studies historical events,	5	v						
	Kazakhstan	phenomena, facts, processes that took place on the territory of Kazakhstan from ancient times to the present day. The sections of the discipline include: the steppe empire of the Turks; early feudal states on the territory of Kazakhstan; Kazakhstan during the Mongol conquest (XIII century), medieval states in the XIV-XV centuries. The epoch of the Kazakh	3	•						
		Khanate XV-XVIII centuries. Kazakhstan as part of the Russian Empire, Kazakhstan during the Great Patriotic War, during the formation of independence and at the present stage								
5	Philosophy	Philosophy forms and develops critical and creative thinking, worldview and culture, provides knowledge about the most general and fundamental problems of existence and gives them a methodology for solving various theoretical and practical issues. Philosophy expands the horizon of vision of the modern world, forms citizenship and patriotism, promotes	5	•						

		self-esteem, awareness of the value of human existence. It teaches you to think and act correctly, develops practical and cognitive skills, helps you to search and find ways and ways of living in harmony with yourself, society, and the world around you								
6	Module of socio- political knowledge (sociology, political science)	The study of the course contributes to the formation of students' theoretical knowledge about society as an integral system, provides the political aspect of training a highly qualified specialist on the basis of modern world and domestic political thought. The discipline is designed to improve the quality of both general humanitarian and professional training of students. Knowledge in the field of sociology and political science is necessary to understand political processes, to form a political culture, to develop a personal position and a clearer understanding of the measure of one's responsibility	3	Y						
	Module of socio- political knowledge (cultural studies, psychology)	The module of socio-political knowledge (cultural studies, psychology) is designed to familiarize students with the cultural achievements of mankind, to understand and assimilate the basic forms and universal patterns of formation and development of culture. During the course of cultural studies, general problems of the theory of	5	V						

		culture, leading cultural concepts, universal patterns and mechanisms of formation and development of culture, the main historical stages of the formation and development of Kazakh culture are considered. The regularities										
		of the emergence, development and functioning of mental processes,										
		states, properties of a person engaged										
		in a particular activity, the regularities										
		of the development and functioning of										
		the psyche as a special form of vital activity are also studied										
		Cycle of ger	l 1eral edu	cation	ı disci	nlin	PS					
		•	mponent			P.III.	CB					
		Purpose: to increase the public and	5					V	v			
		individual legal awareness and legal										
		culture of students, as well as the										
		formation of a knowledge system and										
		a civic position on combating										
		corruption as an antisocial										
8		phenomenon. Contents: Content:										
		improvement of socio-economic										
		relations of the Kazakh society,										
		psychological features of corrupt										
		behavior, formation of an anti-										
		corruption culture, legal responsibility										
		for acts of corruption in various fields.										
		Purpose: To develop basic knowledge	5					V	V			
		of economic processes and skills in										
	economics and	entrepreneurial activities. Content:										
-	entrepreneurship	The course aims to develop skills in										
	entrepreneursnip an	analyzing economic concepts such as										
		supply and demand, and market										

		equilibrium. It includes the basics of creating and managing a business, developing business plans, risk assessment, and strategic decisionmaking.								
10	Fundamentals of scientific research methods	Purpose: to form a systematic understanding of the methodology of scientific cognition among students; to develop scientific thinking skills; to form experience in organizing and conducting scientific research; to develop a competence-based approach to the use of methods and rules for conducting research in the field of mechanical engineering, related processes and their technologies. Contents: stages of scientific research, terms and concepts, methods of conducting an experiment, mathematical methods of processing research results. Concepts of engineering, laboratory and industrial experiment, bench research.	5		v				v	
	Basics of Financial Literacy	Purpose: formation of financial literacy of students on the basis of building a direct link between the acquired knowledge and their practical application. Contents: using in practice all kinds of tools in the field of financial management, saving and increasing savings, competent budget planning, obtaining practical skills in calculating, paying taxes and correctly filling out tax reports, analyzing	5			V	v			

		Cin on aid in Compation and and in a					1					
		financial information, orienting in										
		financial products to choose adequate										
		investment strategies.										
		Purpose: formation of ecological	5				'	٠	V			
		knowledge and consciousness,										
		obtaining theoretical and practical										
		knowledge on modern methods of										
		rational use of natural resources and										
		environmental protection. Contents:										
		the study of the tasks of ecology as a										
1.0	Ecology and life	science, the laws of the functioning of										
1 1/	safety	natural systems and aspects of										
		environmental safety in working										
		conditions, environmental monitoring										
		and management in the field of its										
		safety, ways to solve environmental										
		problems; life safety in the										
		technosphere, emergencies of a natural										
		and man-made nature.										
			e of basic	disci	alinas					 <u> </u>		
			versity c	_								
		Purpose: to introduce students to the	5		v							
		fundamental concepts of linear			•							
		algebra, analytical geometry and										
		mathematical analysis. To form the										
		ability to solve typical and applied										
		problems of the discipline. Contents_										
13	Mathematics I	Elements of linear algebra, vector										
13	iviamemanes i	algebra and analytical geometry.										
		Introduction to the analysis.										
		Differential calculus of a function of										
		one variable. The study of functions										
		using derivatives. Functions of several										
		variables. Partial derivatives. The										

		extremum of a function of two				I				
		variables.								
		Purpose:To form ideas about the	5							
		-	3	v						
		modern physical picture of the world								
		and scientific worldview, the ability to								
		use knowledge of fundamental laws,								
		theories of classical and modern								
14	Physics	physics. Contents_ physical								
		fundamentals of mechanics,								
		fundamentals of molecular physics								
		and thermodynamics, electricity and								
		magnetism, vibrations and waves,								
		optics and fundamentals of quantum								
		physics.								
		Purpose: To teach students integration	5	V						
		methods. To teach you how to choose								
		the right method for finding the								
		primitive. To teach how to apply a								
		certain integral to solve practical								
		problems. Contents_ integral calculus								
		of the function of one and two								
15	Mathematics II	variables, series theory. Indefinite								
		integrals, methods of their calculation.								
		Certain integrals and applications of								
		certain integrals. Improper integrals.								
		Theory of numerical and functional								
		series, Taylor and Maclaurin series,								
		application of series to approximate								
		calculations_								
		Purpose: To develop students'	5		V		V			
	Engineering and	knowledge of drawing construction								
16	Engineering and computer graphics	and skills in developing graphical and								
	computer graphics	textual design documentation in								
		accordance with standards. Content:								

		Students will study ESKD standards, graphic primitives, geometric constructions, methods and properties of orthogonal projection, Monge's projection, axonometric projections, metric tasks, types and features of connections, creating part sketches and assembly drawings, detailing, and creating complex 3D solid objects in AutoCAD.									
17	Fundamentals of the specialty	The purpose of studying the discipline is to form students' understanding of the basics of mining and metallurgical and oil and gas production, extraction, processing and transportation of minerals, machinery and equipment used in the mining and metallurgical and oil and gas industry. During the study, students will be introduced to the technological processes and the main equipment of the mining and metallurgical and oil and gas industries, the main methods of maintenance, the principles of predictive analytics of equipment.	5		v					V	
18	Thermodynamics, heat transfer and thermal engineering installations	The main issues and methods for obtaining, converting, transferring and using thermal energy, the fundamental principles of operation and schemes of heat engineering installations, to teach how to evaluate and compare the energy and economic indicators of heat power plants, to effectively use the means of production in	5	v		v			v		

		technological processes. The study of the physical foundations, devices, principle of operation and technical characteristics of the main and auxiliary heat and power equipment and systems.									
19	Theoretical and applied mechanics	_To involve students in the development and solution of tasks that help bridge the gap between scientific theory and engineering practice.Contents_ Theoretical mechanics, theory of mechanisms and machines. Theoretical mechanics deals with the general laws of mechanical movements of material bodies and the mechanical interactions between them. In the theory of mechanisms and machines, general methods of research, construction, and kinematics of mechanisms and machines are studied	5	V			V				
20	Basics of hydraulics and hydraulic drives of technological machines	Application of knowledge in the field of technical fluid mechanics (hydraulics), for the calculation of hydraulic pressure systems, hydraulic machines, hydraulic and pneumatic actuators, widely used in the oil industry. Full hydraulic calculation of various hydraulic systems, hydraulic and pneumatic equipment drives. Getting the basics of knowledge in the field of hydraulics - theoretical fluid mechanics in the field of hydraulic and pneumatic actuators.	5	V					v		

21	Strength of materials	_to independently calculate structural elements, mechanisms and machine parts. Contents_ Stretching and compression. Stresses in cross sections and deformations of a straight rod. Mechanical properties of materials under tension and compression. Calculation of tensile and compressive strength and stiffness. Geometric characteristics of flat sections. Shear and torsion. Calculation of strength and torsional stiffness. The bend. Normal and tangential bending stresses_ The discipline of Metrology,		v	V		V	v		
22	Metrology, standardization and technical measurements	standardization and technical measurements is one of the basic disciplines aimed at developing scientifically based skills for students to control, apply and meet the requirements of standards in force in the Republic of Kazakhstan in the production and repair of machine parts. Solving the problems of the basics of interchangeability and certification of engineering products. To form a system of competencies of a future specialist in the field of production and repair technologies, by studying the basics of the theory of standardization, metrology and certification to solve the tasks of professional activity.	6					•		

23	Construction materials processing machinery and equipment	The solution of the most important technical problems associated with the creation and development of the most economical materials, increasing the accuracy, reliability and performance of mechanisms and devices depends largely on the development of materials science and technology for producing and processing materials, concretization of knowledge about the relationship between the composition, structure and properties of materials used for management of the structure and properties of structural materials.	5		Y		V				
24	Industrial economics	Purpose: To provide students with an understanding of the basic principles and factors affecting industrial economics, including the organization of production, the competitiveness of enterprises, and the impact of government policy. Content: study the structure and dynamics of industrial production, analyze the main factors affecting the efficiency of enterprises, including technological innovation, factors of production and competition. Examination of the role of public policy in industrial development and industrial safety issues.	5			V		V			
/)	Bases of designing and details of cars	Purpose: to acquire knowledge of calculations and design of machine parts and assemblies, taking into account the criteria of strength, reliability and stability.Contents_	5		v		v				

		general principles of design and construction, construction of models and calculation algorithms for standard machine parts taking into account performance criteria, fundamentals of theory and methodology for calculating standard machine parts, computer technologies for designing assemblies and machine parts. Basic requirements for machine parts and assemblies_									
76	Electrotechnics and microelectronics	Electrical and magnetic circuits. Basic definitions, parameters and methods of calculation of DC electrical circuits. Analysis and calculation of linear AC circuits. Analysis and calculation of electrical circuits with nonlinear elements. Analysis and calculation of magnetic circuits. Electromagnetic devices and electrical machines. Fundamentals of electronics and electrical measurements. The element base of modern electronic devices. Semiconductor elements. Electronic equipment power supply devices. Amplifiers of electrical signals. Electronic amplifiers and generators. Elements of pulse technology. Pulse and auto-generator devices. Fundamentals of digital and microelectronics. Microprocessor tools		v		V					
27	Industrial safety	A complex of scientifically based constructive, technological, organizational measures aimed at	5			v	v				

		minimizing the man-made impact of objects on environmental components. Forecasting, assessment of the consequences of man-made impacts on the components of the natural environment during the construction and operation of facilities. Classification, composition, sources of technogenic impact of objects. Technology of restoration and optimization of the state of components of the natural environment									
/ X	Algorithmization and programming basics	The course explores the fundamental concepts of programming: operator, variable, procedure, function, data type. The main structures of algorithms are considered, such as linear, branched, cyclic. The course examines the basic forms of data representation: strings, structures, arrays, lists. Separate topics are devoted to the creation of widely used sorting algorithms, searching for the minimum and maximum values in an array, string processing, iterative and recursive algorithms, building flowcharts of algorithms and developing programs based on them.	4	V	Y						
, Ju	durability of	Students study the criteria for calculating technological machines and structures for strength. To learn the formulation and analysis of calculation results, the ability to	4				V		v		

		determine operating stresses, to master a number of accurate and approximate methods for determining the characteristics of operational loads, considering the bearing capacity of parts and structures as a random variable, to be able to calculate dynamic loads in drives and other parts of technological machines									
	Technology of manufacturing technological machines	Mastering the discipline is based on the study of the methodology for calculating the economic efficiency of the method of obtaining blanks, normalizing operations; application of operations design methodology; methods for calculating the minimum allowances, cutting conditions, the required amount of technological equipment, methods for ensuring the specified accuracy of manufacturing parts, technological processes for the production of standard parts and assemblies of machines and equipment.	5		v			V			
31	Technical diagnostics of technological machines	The course is aimed at studying the theoretical foundations of technical diagnostics and obtaining practical skills in the use of non-destructive testing methods to assess the technical condition of technological machines and equipment; to familiarize students with the basics of the theory of technical diagnostics, types of technical condition, controlled	4						v	v	v

		parameters, technical diagnostics systems; to study the physical foundations of non-destructive testing methods for detecting and diagnosing malfunctions of technological equipment; familiarization with equipment for non-destructive testing, test methods, acquisition of practical skills										
32	Microcontroller programming	Microcontroller Programming This course is intended for students to study the current state of microprocessor and microcontroller control systems. The purpose of the course is the formation of bachelor's knowledge on the principles of building digital data processing tools, the features of the organization of the work of microprocessor devices and the use of microprocessors in control systems of technical objects. As part of the course, the student will master the microcontrollers of the AVR family. AVR command system. Means of input/output in microprocessor systems. Programming of microprocessor systems.			v	V						
		· · · · · · · · · · · · · · · · · · ·	of basic nponent	-								
33	Oil and gas production technologies	Students study the basics of well construction technology, oil and gas production. Acquisition of skills for competent choice of the method of opening productive objects, designing	5						v	v		

			ı	1					1		1	1	1
		the design of wells, choosing methods											
		for influencing the productive											
		formation, calculating the modes of											
		operation of the "well-formation"											
		system. The study of techniques and											
		technologies used in the oil and gas											
		industry, methods of construction and											
		operation of wells, collection and											
		preparation for transportation of oil											
		and gas in the fields, underground gas											
		storage. Acquisition of skills in											
		calculating wells, the need for											
		materials for the preparation of drilling											
		fluid, drilling mode parameters,											
		physical properties of oil and gas, gas											
		well flow rates.											
		The aim of the course is to contribute	5						v	v			
		to the development of scientific and							ľ	ľ			
		technical thinking and the acquisition											
		by students of the necessary											
		knowledge and practical skills in the											
		field of technology of stripping and											
		mining operations in open											
		development Objectives of the course:											
		study of the level of mining and the											
34	Mining technologies	need for them in the national											
	272	economy, information about mineral											
		deposits and the condition of their											
		occurrence; familiarization with the											
		methods of mining and prospects for											
		their development; the essence of											
		underground mining and the main											
		mine workings; the main production											
		processes and technical and economic											
		indicators of mines; methods of											

		opening and systems development of mineral deposits; basic technological processes.									
35	Technologies of metallurgical production	The purpose of teaching the discipline is to give students in-depth knowledge about the basic theoretical and technological provisions of the production of ferrous and non-ferrous metals; the ability to solve complex technological problems; to have the skills of independent work on the organization and management of experimental studies of technological processes at existing metallurgical units and promising experimental and pilot industrial complexes. The objectives of studying the discipline are to master the general laws of processes occurring in ferrous and non-ferrous metallurgy units; to master methods for calculating the charge, material and thermal balances of the process, intensification of technological processes and control of melting; to get acquainted with promising technologies in metallurgy, including hydrometallurgy.	5					V	V		
36	Fundamentals of Scientific Research	Discipline studies the role of science in material production, economics, politics, management and in the education system and other areas of society. New tendencies in construction, as well as modern methods for solving research and	5	V						v	V

		professional problems. The current state of science, experimental research. The latest instruments and equipment for experimental research; The theoretical basis for the formation of scientific research in the field of construction, as well as legislative acts, ethical and legal norms and regulatory materials in the organization and conduct of scientific research. Methods for conducting experimental studies of various types of structures;								
37	Fundamentals of Artificial Intelligence	Purpose: to familiarize students with the basic concepts, methods and technologies in the field of artificial intelligence: machine learning, computer vision, natural language processing, etc. Contents: general definition of artificial intelligence, intelligent agents, information retrieval and state space exploration, logical agents, architecture of artificial intelligence systems, expert systems, observational learning, statistical learning methods, probabilistic processing of linguistic information, semantic models, natural language processing systems.	5		V				V	V
X	Drilling machines and complexes	The construction of equipment for	5				V	v		

		systems in accordance with the trends of global technical progress. Evaluating the effectiveness of machinery and equipment for choosing a rational way of their operation The technical level, ways to improve the design, methods of operation of drilling machines and systems.									
39	Mining machinery and equipment	Pneumatic and hydraulic drilling rigs for drilling holes and wells. Charging machines and installations. Designs of loading machines of cyclic and continuous action and excavators. Traction calculations. Machines and complexes for tunneling and cleaning works. Machines and equipment for vertical and inclined workings and shafts. Inspection and maintenance of the roof of mines and workings.	5					v	V		
40	Fundamentals of sustainable development and ESG projects in Kazakhstan	Purpose: the goal is for students to master the theoretical foundations and practical skills in the field of sustainable development and ESG, as well as to develop an understanding of the role of these aspects in the modern economic and social development of Kazakhstan. Contents: introduces the principles of sustainable development and the implementation of ESG practices in Kazakhstan, includes the study of national and international standards, analysis of successful ESG projects and strategies for their	5	V			V				V

		implementation in enterprises and										
		organizations.										
41	Technological lines and complexes of metallurgical production	The course provides students with the necessary knowledge about the scale of metallurgical production and the continuity of its constituent processes, patterns of construction and trends in the development of technological lines of metallurgical production, necessary for production, design and research activities. Students' mastering of technologies for obtaining various metals, starting with enrichment and ending with metalworking processes by pressure, the structure of existing technological lines and complexes of metallurgical workshops and prospects for the development of metallurgical production, the principle of choosing machines and mechanisms, determining the required number of them for lines and complexes of metallurgical workshops	of profile						V	V		
			versity co		1							
	Installation and repair of technological machines	The acquisition by students of theoretical knowledge and practical skills on the basics of designing technological processes for the repair and restoration of worn parts, assembly units, machines and equipment; Determination of optimal modes of performance of production	5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		V					v	
		processes; quality control of repair of										

		machines and equipment. Organization and engineering support of high-quality installation of equipment, methods of mechanization and automation of technological processes and rules for safe work								
43	Instrumentation and automation of technological machines	Formation of the future specialist knowledge of the design of devices, their purpose and principles of operation. As well as special training of engineering and technical personnel with scientific and practical knowledge in the field of operation, as it solves relevant engineering and scientific problems in the field of quality, performance properties and rational use of fuels, oils, lubricants and technical fluids.	5		V		V			V
44	Fundamentals of reliability of technological machines	The course provides students with knowledge and skills that provide a creative approach to solving problems of reliability and durability of technological machines and equipment necessary to increase the level of automation, reduce huge repair costs from machine downtime, and ensure safety during equipment operation. When studying disciplines, students master the issues of ensuring the reliability and durability of technological equipment; principles of rational use of technical parameters of technological machines					v	V		

45	Geomonitoring of the technical condition of technological machines		of profile			3	v						V	v
			mponent	of cho	oice			•	-	1		1		
	Oil and gas field machines and mechanisms	The design of the wellbore completed by drilling. Units of capital and current repair of wells. Equipment and tools for the overhaul and maintenance of wells. Equipment wells for various methods of influence on the reservoir in order to increase its oil recovery. Collection system, preparation of well production. Equipment for maintaining reservoir pressure and oil displacement from productive formations	5			v					v			
47	Mining and transport machines	As part of the course, students study the principles of operation and design of mining and transport machines; classification and purpose of machines for mining and transportation of	5			V					v			

		minerals; schematic diagrams, design features, applications and basic design characteristics of various machines for breaking, loading, transportation, fastening and other auxiliary operations; methods for determining the main structural and operational parameters of mining and transport machines, their productivity and efficiency in mining production								
	Equipment for metallurgical plants	General characteristics of the mechanical equipment of an iron and steel industry. Classification of the equipment on a fuctioning of drives in a cycle of working hours. The crushing equipment. The common data on process of crushing. Types of crushing ma-chines. Calculation of crushers. Chopper the equipment. The common data and classification of mills. Calculation of key parameters. The equipment of a uniform feed of technological machines. Types, the device, calculation of key parameters. The equipment for enrichment. The necessary mechanical equipment. Calculation of key parameters. The equipment for drying concentrates	5		V			V		
49	Design and construction of oil and gas machines	"Design and construction of oil and gas machines" gives students the following knowledge and skills: knowledge of basic oil and gas machines, mechanisms and equipment; knowledge of the design	5		V			v		

		conditions and basic requirements for oil and gas machines and equipment; knowledge of labor protection and environmental issues; ability to choose equipment according to the operating conditions of oil fields; ability to choose the operating mode of equipment, maintenance and routine repairs; the ability to perform verification calculations of load capacity, performance, pressure, temperature; skills in using scientific, technical and reference literature, determining the technical characteristics of machines and equipment and evaluating their technical and economic efficiency.								
50	Design and construction of mining machines	In the academic discipline the student studies the basics of computer-aided design of mining, transportation vehicles and stationary installations; methods and techniques for developing tools for interactive documentation and tools for teamwork on the project. The fundamentals of designing and modifying parts and units of machines and installations are considered. Students get knowledge in the field of creating machines and installations, documentation design, interactive electronic technical guides.	5		V			v		
	Construction of metallurgical machines	The purpose of the study: Encouraging students to make the right choice of design, stages of implementation,	5		V			v		

	1			1 1	1		1	1	1	1	ı	1	
		review and approval of design											
		documentation; method of											ı
		organization and execution of design											1
		work; methodology of designing of											1
		metallurgical machines and units.											1
		Summary: Contents and stages of											
		development of machine-building											1
		products. The order of development,											
		production, delivery of machines and											
		aggregates. Forecasting developments.											1
		Calculations during projecting.											1
		General principles of construction.											
		Requirements for the construction of											
		ma¬shin. Principles and methods of											
		construction. Variants of development											1
		and selection of the optimal variants.											
		Organization of design works. The											
		basic rules for the design of											
		mechanisms and machine components.											
		Construction of joints of parts. Plug-in											
		connections: threaded, keyed, splined,											ı
		etc. All-in-one connections: welded											ı
		and brazed. Optimization of loading.											ı
		Analysis of the structure of											1
		mechanisms. Construction of details.											1
		Technological metallurgical											ı
		equipment. Ensuring the quality of											1
		developed machines and units.											1
		Acquisition of solid theoretical and	5			v			v				
		practical knowledge of the designs and	_										
	Hydraulic machines	principles of operation of hydraulic											
	and compressors in	machines, compressors, widely used in											
	the oil and gas	the transportation of oil, petroleum											
	industry	products and gas through pipelines.											
		General schemes of hydraulic											
L	I	Contrar benefited of injuruante		1						l .			

		machines and compressors. The									
		principle of the volumetric, flow									1
		machines. Varieties of hydraulic and									1
		compressor machines. Theories of									
		action and characteristics. Areas,									
		features of application, regulation of									
		operating modes									
		The device is technologically	5		V				V		
		important and large energy consumers									
		in the mining industry: pumps, fans									
		and compressors of various types, the									
		main parameters and scope of these									1
53	Dewatering, fan and	installations. Methods of design and									
33	pneumatic plants	installation of pumping stations, fan									
		installations for main ventilation.									
		Pipeline networks, their device and									
		installation, auxiliary equipment,									ı
		ensuring efficient and safe operation									
		of pumping, fan and compressor units									1
		Studying the course gives students an	5				V				v
		idea of modern systems of dust and									
		gas cleaning and recycling water									
		supply of industrial enterprises.									
		Contains basic information about the									
		features of water supply of industrial									
1 3 /I		enterprises. The systems and schemes									
		of industrial water supply, methods									
		and technologies of water treatment									
		are considered, data on the design of									
		installations for cooling recycled water									
		and improving its quality, preventing									
		suspension deposits and biological									
		fouling, scale formation and corrosion									j

		in pipelines and equipment are contained.							
55	Energy-saving technologies in the oil and gas industry	Formation of knowledge, skills and abilities in energy efficiency and energy saving in the mining, metallurgical and oil and gas industries based on equipment and technologies for automation and control, mastering knowledge in the field of energy saving, mastering the principles and methods of energy saving as a set of measures or actions taken to ensure efficient use of energy resources and technological equipment during their operation. Objectives of the discipline: Familiarization with the main methods of reducing the energy intensity of industrial enterprises and the sphere of energy consumption by assessing the effectiveness of the existing energy complex, making recommendations on the correct choice of energy-saving technologies and ensuring their implementation by means of automation of technological processes.				V		V	V
56	Energy coving	Formation of knowledge, skills and abilities in energy efficiency and energy saving in the mining, metallurgical and oil and gas industries based on equipment and technologies for automation and control, mastering knowledge in the field of energy saving, mastering the	5			V		v	V

		principles and methods of energy saving as a set of measures or actions taken to ensure efficient use of energy resources and technological equipment during their operation. Objectives of the discipline: Familiarization with the main methods of reducing the energy intensity of industrial enterprises and the sphere of energy consumption by assessing the effectiveness of the existing energy complex, making recommendations on the correct choice of energy-saving technologies and ensuring their implementation by means of automation of technological processes.									
57	Energy-saving technologies in the metallurgical industry	Formation of knowledge, skills and abilities in energy efficiency and energy saving in the mining, metallurgical and oil and gas industries based on equipment and technologies for automation and control, mastering knowledge in the field of energy saving, mastering the principles and methods of energy saving as a set of measures or actions taken to ensure efficient use of energy resources and technological equipment during their operation.	5			v			v		V
58	Predictive technologies in the oil and gas industry	Formation of students' knowledge system in the field of theory and practice of using predictive technologies in the maintenance and repair of technological equipment and	6		V					V	V

		systems; Formation of skills in the use of information technology in the design of technical management systems, in solving problems of system analysis of the state of equipment and its management; Formation of skills in applying methods, system analysis, theory of knowledge to develop scientifically based solutions in solving technical problems in the operation and maintenance of technological equipment;								
59	Predictive technologies in mining	Formation of students' knowledge system in the field of theory and practice of using predictive technologies in the maintenance and repair of technological equipment and systems; Formation of skills in the use of information technology in the design of technical management systems, in solving problems of system analysis of the state of equipment and its management; Formation of skills in applying methods, system analysis, theory of knowledge to develop scientifically based solutions in solving technical problems in the operation and maintenance of technological equipment;	6		V				V	V
1 60	Predictive technologies in	Formation of knowledge, skills and abilities in energy efficiency and energy saving in the mining,	6		v				V	V

	metallurgical	metallurgical and oil and gas							
	\mathcal{C}	industries based on equipment and							
		technologies for automation and							
		control, mastering knowledge in the							
		field of energy saving, mastering the							
		principles and methods of energy							
		saving as a set of measures or actions							
		taken to ensure efficient use of energy							
		resources and technological equipment							
		during their operation. Objectives of							
		the discipline: Familiarization with the							
		main methods of reducing the energy							
		intensity of industrial enterprises and							
		the sphere of energy consumption by							
		assessing the effectiveness of the							
		existing energy complex, making							
		recommendations on the correct							
		choice of energy-saving technologies							
		and ensuring their implementation by							
		means of automation of technological							
		processes.							
		Theoretical and practical training of	5		V		V	V	
		future specialists - mechanical							
		engineers of oil and gas equipment on							
		general issues: proper operation and							
		timely repair of machines,							
61		identification of the type of damage							
		and wear of parts, methods of							
	1 4 4	hardening parts, development of							
		technological repair processes,							
		selection of repair equipment and							
		organization of repair services of oil							
		and gas enterprises industry.							

62	Operation, repair and maintenance of mining machines and equipment	Theoretical and practical training of future specialists - mechanical engineers of mining equipment on general issues: proper operation and timely repair of machines, identification of the type of damage and wear of parts, methods of hardening parts, development of technological repair processes, selection of repair equipment and organization of repair services of oil and gas enterprises industry.	5		V		v	V	
63	Operation, repair and maintenance of metallurgical machines and equipment	Theoretical and practical training of future specialists - mechanical engineers of metallurgical equipment on general issues: proper operation and timely repair of machines, identification of the type of damage and wear of parts, methods of hardening parts, development of technological repair processes, selection of repair equipment and organization of repair services of oil and gas enterprises industry.	5		V		v	V	
64	Organization, planning and management of the repair of oil and gas machines	Forms and methods of organizing and managing the repair and maintenance of oil and gas equipment, features of the formation and organization of the work of services; basic methods of operation and repair of equipment; get acquainted with the rules for the formation of production units, their structure and the procedure for recruiting teams. Organization of	5		v		v	V	

		production processes of structural divisions, forms and rules of interaction with third-party enterprises, specialization and cooperation in production activities. Knowledge of these features will help the specialist quickly adapt to practical activities, master the skills of conducting efficiency analysis and coordinating the activities of various departments.							
65	Organization, planning and management of the repair of mining machines	Forms and methods of organizing and managing the repair and maintenance of mining equipment, features of the formation and organization of the work of services; basic methods of operation and repair of equipment; get acquainted with the rules for the formation of production units, their structure and the procedure for recruiting teams. Organization of production processes of structural divisions, forms and rules of interaction with third-party enterprises, specialization and cooperation in production activities. Knowledge of these features will help the specialist quickly adapt to practical activities, master the skills of conducting efficiency analysis and coordinating the activities of various departments.	5		V		v	V	
66	Organization, planning and	Forms and methods of organizing and managing the repair and maintenance	5		v		v	v	

	repair of metallurgical machines	of metallurgical equipment, features of the formation and organization of the work of services; basic methods of operation and repair of equipment; get acquainted with the rules for the formation of production units, their structure and the procedure for recruiting teams. Organization of production processes of structural divisions, forms and rules of interaction with third-party enterprises, specialization and cooperation in production activities. Knowledge of these features will help the specialist quickly adapt to practical activities, master the skills of conducting efficiency analysis and coordinating the activities of various departments.							
67	Digitalization of production processes in oil and gas production	Formation of a system of knowledge about the main types of digital technologies in the oil and gas field, their methods of application, the benefits of use and limitations used to solve technical problems. To master the skills of working with modern digital technologies used in the oil and gas industry. Formation of students' competencies in the use of information and end-to-end technologies.	6		v			v	
	Digitalization of mining production	Formation of a system of knowledge about the main types of digital mining technologies, their methods of application, the advantages of use and	6		v			V	

		limitations used to solve technical problems. To master the skills of working with modern digital technologies used in mining. Formation of students' competencies in the use of information and end-to-end technologies.							
69	Digitalization of production processes in metallurgical production	Formation of a system of knowledge about the main types of digital technologies in the oil and gas field, their methods of application, the benefits of use and limitations used to solve technical problems. To master the skills of working with modern digital technologies used in the oil and gas industry. Formation of students' competencies in the use of information and end-to-end technologies.	6		v			V	
	Inclusive engineering technologies	The purpose of the discipline is to develop future engineers' competencies in the development, design and implementation of technical solutions that take into account the principles of inclusive engineering and accessibility. The discipline includes the study of the fundamentals of inclusive engineering: universal design and accessibility of engineering solutions, ethical and social aspects of inclusive engineering. Design of technical solutions with inclusion in mind, implementation of VR/AR simulations for modeling inclusive engineering systems.	5		V				

Students will acquire skills in applying								
modern technologies to create								İ
affordable solutions.								l

5. Curriculum of the educational program

KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.L.SATPAYEN

APPROVED

Chairman of the Management BoardRector of Sharin insired after K.S.Satpayev

M.M. Begentaev

2024

CURRICULUM

of Educational Program on enrollment for 2024-2025 academic year

Educational program 6807132 - "Predictive technologies and machine diagnostics."

											1 * aK	MR KOFAMA			
	Form of study: full-time	Duration	of stud	y: 4 years	-	_		Acaden	nic degree:	Bachelor	of Enginee	ring and Te	echnology		
						SIS			Allocation	of face-to-	face training	g based on co	ourses and	semesters	
Discipline	21		Total amoun	Total	classroo m volume	(includi	Form of	Ic	ourse	He	ourse	III co	urse	IV c	ourse
code	Name of disciplines	Cycle	t in	hours	of	ng TSIS)	control	-	r						
			credits		lek/lab/pr	in hours		1 semester	2 semester	3 semester	4 semester	5 semester	6 semester	7 semester	8 semeste
CYCLE	OF GENERAL EDUCATION DISCIPLINES (GED)			11.51										
0.0000000	S ASINO	DOMESTIC COLUMNS	77,000	-0.010	odule of la	1000			0					1	
LNG108	English language	GED, RC	10	300	0/0/6	210	E	5	.5					<u> </u>	
LNG 104	Kazakh (Russian) language	GED, RC	10	300	0/0/6	210	E	5	.5						
KFK 101-	Terrandor			115000	odule of p	hysical t	training						_		_
104	Physical Culture	GED, RC	8	240	0/0/8	120	Difference	2	2	2	2				
			P	4-3. Info	rmation to	echnolog	y module	-							
CSE 677	Information and Communication Technologies (in English)	GED, RC	5	150	2/1/0	105	Е				5				
			M-4	. Module	of socio-	cultural	developm	ent							
HUM137	History of Kazakhstan	GED, RC	5	150	1/0/2	105	GE		- 3						
HUM132	Philosophy	GED, RC	5	150	1/0/2	105	Ε				3				
HUM120	Module of socio-political knowledge (sociology, political science)	GED, RC	3	90	1/0/1	60	Е				3				
HUM134	Module of socio-political knowledge (culturology, psychology)	GED, RC	5	150	2/0/1	105	Е			5					
200000		M.5 Ma	dula of	anti-core	ruption cu	Itura ec	ology and	l life sefe	ty bara	36		1			-
HUM136	Fundamentals of anti-corruption culture and law	111-0, IVIO	uic of	anu-cori	Т	iui e, ec	Joegy and	ane sate	iy base						
MNG489	Fundamentals of Economics and Entrepreneurship														
MSM500	Scientific research methods	GED, CCH	5	150	2/0/1	105	E			5					
MNG564	Basics of Financial Literacy			0.000		SAVELE .									
CH 656	Ecology and life safety														
CYCLE	OF BASIC DISCIPLINES (BD)														
		N	1-6. M	dule of	physical ar	nd math	ematical	training							
MAT 101 PHY 468		BD, UC	5	150	1/0/2	105	E	5	-			-			
	Physics Mathematics II	BD, UC	5	150	1/1/1	105	E	5	- 5						
				M-7.	Basic tra	ining me	odule								
GEN 429 TEC606	Engineering and computer graphics Basics of the specialty	BD, UC	5	150	1/0/2	105	E	5							
TEC577	Thermodynamics, heat transfer and thermal engineering	BD, UC	5	150	2/0/1	105	E	4		5					1
	installations	BD, UC		-	2/0/1	105	E	_					_		_
GEN411	Theoretical and applied mechanics	BD, UC	5	150	2/1/0	105	E			5			_		_
TEC461	Fundamentals of hydraulies and hydraulie drives of technological machines	BD, UC	5	150	2/0/1	105	Е					5			
GEN408	Strength of materials	BD, UC	5	150	1/1/1	105	E				5				
TEC608 TEC460	Metrology, standardization and technical measurements	BD, UC BD, UC	5	150	2/0/2	105	E		- 5	6	-		-	-	-
NSE143	Structural materials of technological machines and equipment Economics of industry	BD, UC	5	150	2/0/1	105	E	-	- 3	-		-	-	- 5	-
GEN125	Basics of design and machine parts	BD, UC	5	150	1/1/1	.: 105	E	100			5	-			
ELC103	Electrotechnics and microelectronics	BD, UC	- 5	150	2/1/0	105	E					5			
TEC578	Industrial Safety	BD, UC	5	150	2/0/1	105	E							5	
CSE554 TEC583	Algorithmization and Programming	BD. UC	4	120	1/1/1	75	E		-			4	-	-	
TEC584	Oil and gas production technologies Mining technologies				2/0/1		E					1			
TEC585	Technologies of metallurgical production	BD, CCH	5	150	2/0/1	105	E					5 .			
PED122	Fundamentals of Scientific Research	ab, cen		120	2/0/1	1	Е					1			
MNG562 CSE831	Legal regulation of intellectual property Fundamentals of Artificial Intelligence				2/0/1	1	E		7				-		1177
TEC555	Dynamics and strength of technological machines	BD, UC	4	120	2/0/1	75	E					4			
PED189	Manufacturing technology of technological machines	BD, UC	5	150	2/0/1	105	E				5				
TEC607 AUT184	Technical diagnostics of technological machines Microcontroller programming	BD. UC	4	120	2/0/1	75	E	-			-	-	3	-	-
TEC485	Drilling machines and complexes	BD, UC	5	150	2/1/0	105	E	-	-	-	-	-		-	-
TEC483	Technological lines and complexes of metallurgical production				2/0/1	1	E								
MNG563	Fundamentals of sustainable development and ESG projects in	BD, CCH	5	150	2/0/1	105	E						- 5		
PED137	Kazakhstan Mining machinery and equipment				2/0/1	1	E								
	Educational practice	BD, UC	2		I				2						
AAP173	OF PROFILE DISCIPLINES (PD)			M.C	1.6	20.00	******	_							
				vi-8. Mo	dule of pr	appropriate the same	-	1	1		1	1			T
CYCLE	I and the second second	pp		5.46			E	1	1		1	1	1	5	-
CYCLE TEC586	Installation and repair of technological machines	PD, UC	5	150	2/0/1	105						- 4			
CYCLE	Instrumentation and automation of technological machines	PD, UC	5	150 150 150	2/0/1 2/0/1 2/0/1	105	E					5	5		
TEC586 PED193 TEC587	Instrumentation and automation of technological machines Fundamentals of Reliability of Technological Machines Geomonitoring of the technical condition of technological	PD, UC PD, UC	5	150 150	2/0/1	105 105	E E					5	5		- 3
TEC586 PED193 TEC587 TEC588	Instrumentation and automation of technological machines Fundamentals of Reliability of Technological Machines Geomonitoring of the technical condition of technological machines	PD, UC	5	150	2/0/1 2/0/1 2/0/1	105	E E					. 5	5		3
TEC586 PED193 TEC587 TEC588 TEC479	Instrumentation and automation of technological machines Fundamentals of Reliability of Technological Machines Geomonitoring of the technical condition of technological machines Oil and gas field machines and mechanisms	PD, UC PD, UC PD, UC	5 5 5	150 150 150	2/0/1 2/0/1 2/0/1 2/0/1	105 105 105	E E E					. 5			5
TEC586 PED193 TEC587 TEC588	Instrumentation and automation of technological machines Fundamentals of Reliability of Technological Machines Geomonitoring of the technical condition of technological machines	PD, UC PD, UC	5 5 5	150 150	2/0/1 2/0/1 2/0/1	105 105	E E						5		3

									60		60	6	()		60
	Total for UNIVERSITY:	210						31	29	28	32	28	32	31	29
AAP500	Military training	DVO	0	T. J. Louis	- moditi	1 1 1	o or trai	,		1		_		Pi -	T
LANCE OF	The Committee	IA.		Module	e of addit	ional tyn	es of trai	ning	_						1 0
ECA109	final examination	IA	8	1	1	1		1							8
	I vanishing banggar 11	1		M-9, M	odule of	inal atte	station				_		1 10		
AP183	Production practice II	PD. UC	3								-		3		
AP102	Production practice I	PD, UC	2								2				
EC605	Digitalization of production processes in metallurgical production	10.001	U	100	2/0/1	120	E								1
EC604	Digitalization of mining production processes	PD. CCH	6	180	2/0/1	120	E					1500			6
EC603	Digitalization of production processes in oil and gas production				2/0/1		E								
EC602	Organization, planning and management of the repair of metallurgical machines				2/0/1		Е								
EC601	Organization, planning and management of the repair of mining machines	PD, CCH	5	150	2/0/1	105	E								5:
EC600	Organization, planning and management of the repair of oil and gas machines				2/0/1		Е								
EC599	Operation, repair and maintenance of metallurgical machines and equipment				2/0/1		E								
EC598	Operation, repair and maintenance of mining machines and equipment	PD, CCH	5	150	2/0/1	105	Е								5
EC597	Operation, repair and maintenance of oil and gas machines and equipmen				2/0/1		E								
EC596	Predictive technologies in metallurgical production				2/0/1		E								
EC595	Predictive technologies in mining	PD, CCH	6	180	2/0/1	120	E							6	
EC594	Predictive technologies in the oil and gas industry				2/0/1	8	E							C	
EC453	Energy-saving technologies in the metallurgical industry	CITE-BUSINES		3000	2/0/1	2000	E								
EC593	Energy-saving technologies in the mining industry	PD, CCH	5	150	2/0/1	105	E							5	
EC592	Energy-saving technologies in the oil and gas industry				2/0/1		E		100						
ED118	Dust-gas cleaning and recycling water supply of industrial caterorises			-0-7011	2/1/0		Е			18					
ED431	Dewatering, fan and pneumatic plants	PD, CCH	5	150	2/0/1	105	E							5	
EC127	Hydraulic machines and compressors in the oil and gas industry				2/0/1		E								
ED176	Construction of metallurgical machines				2/0/1		E								-

	Number of credits for the entire period of stu-	dy			
	Cycles of disciplines		Cro	dits	
Cycle code	₩ ±	required component (RC)	university component (UC)	component of choice (CCH)	Total
GED	Cycle of general education disciplines	51		5	56
BD	Cycle of basic disciplines		99	10	109
PD	Cycle of profile disciplines		25	42	67
	Total for theoretical training:	51	124	57	232
FA	Final attestation	8			8
	TOTAL:	59	124	57	240

Decision of the Academic Council of Kazntu named after K.Satpayev. Protocol No 12 or " 18" 04 20 24y.

Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev. Protocol No. 6 or "19 " 04 20 144y.

Decision of the Academic Council of the Institute E&ME . Protocol Ne 4 or "19" 01 2024 y.

Vice-Rector for Academic Affairs

Director of Institute of E&ME

Head of department TM&E

Specialty Council representative from employers

R.K. Uskenbayeva

K.K. Yelemessov

A.T. Shakenov